Phiếu bài tập tam giác cân lớp 7 file word có lời giải.
Mục tiêu
Tam giác cân
Định nghĩa: tam giác cân là tam giác có hai cạnh bằng nhau
Tính chất: Trong tam giác cân, hai góc ở đáy bằng nhau
Dấu hiệu nhận biết:
– Tam giác có hai cạnh bằng nhau thì đó là tam giác cân
– Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.
Tam giác vuông cân
Định nghĩa: Tam giác vuông cân là tam giác vuông có hai cạnh góc vuông bằng nhau.
Tính chất: Mỗi góc nhọn của tam giác vuông cân bằng
Tam giác đều
Định nghĩa: Tam giác đều là tam giác có ba cạnh bằng nhau
Tính chất: Trong tam giác đều mỗi góc bằng
Dấu hiệu nhận biết
- Tam giác có 3 cạnh bằng nhau thì tam giác đó là tam giác đều
- Nếu một tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều.
- Nếu một tam giác cân có một góc bằng thì tam giác đó là tam giác đều.
Phiếu bài tập tam giác cân lớp 7 file word có lời giải
1. Cách chứng minh tam giác cân
Để chứng minh một tam giác là tam giác cân ta sử dụng một trong hai cách sau:
– Cách 1: Chứng minh tam giác đó có hai cạnh bằng nhau.
– Cách 2: Chứng minh tam giác đó có hai góc bằng nhau.
Xem ví dụ dưới đây để nắm được cách chứng minh tam giác cân.
Ví dụ: Trong tam giác ABC có ΔABM = ΔACM . Chứng minh tam giác ABC cân.
+ Chứng minh theo cách 1:
Theo bài ra, ta có:
ΔABM = ΔACM
⇒ AB = AC
⇒ Tam giác ABC cân tại A
+ Chứng minh theo cách 2:
Theo bài ra, ta có:
∆ABM = ∆ACM
⇒ Góc B = C
⇒ Tam giác ABC cân tại A
2. Định nghĩa tam giác cân
Tam giác cân là tam giác có 2 cạnh bên bằng nhau.
Từ hình vẽ, ta xác định được:
– Đỉnh A của tam giác cân ABC là giao điểm của hai cạnh bên AB và AC.
– Góc A được gọi là góc ở đỉnh, hai góc còn lại B và C là góc đáy.
3. Cách dựng tam giác ABC cân tại A
– Vẽ cạnh BC
– Vẽ cung tròn tâm B, bán kính r
– Vẽ cung tròn tâm C, bán kính r
+ Hai cung tròn cắt nhau tại A.
+ Tam giác ABC là tam giác cần vẽ.
4. Tính chất của tam giác cân
– Tính chất 1: Trong tam giác cân, hai góc đáy bằng nhau.
Ví dụ: Tam giác ABC cân tại A ⇒ Góc B = C
– Tính chất 2: Tam giác có hai góc bằng nhau là tam giác cân.
Ví dụ: Tam giác ABC có góc B = C ⇒ Tam giác ABC cân tại A
– Tính chất 3: Trường hợp đặc biệt của tam giác cân:
Tam giác vuông cân là tam giác vuông có hai cạnh góc vuông bằng nhau.
Ví dụ: Tam giác MNP vuông tại M có góc N = P ⇒ Tam giác MNP vuông cân tại M
Tính số đo mỗi góc nhọn của tam giác vuông cân.
Ta có: Δ ABC có Góc A = 90°, Góc B = C
⇒ Góc B + C = 90° (định lí tổng ba góc của một tam giác)
⇒ 2.Ĉ = 90°
⇒ Góc B = C = 45°
Kết luận: Tam giác vuông cân thì hai góc nhọn bằng 45°.
5. Bài tập áp dụng các cách chứng minh tam giác cân
Bài 1: Trong các tam giác ở các hình 15a, b, c, d, tam giác nào là tam giác cân, tam giác nào là tam giác đều ? Vì sao ?
Giải:
a) Ta có: AB = BM = AM (gt) => tam giác ABM đều.
AM = CM (gt) => tam giác MAC cân tại M.
b) Ta có: ED = DG = EG (gt) => tam giác EDG đều.
DH = DE => tam giác DEH cân tại D.
Ta có: EG = GF => tam giác GEF cân tại G.
Ta có: EH = EF => tam giác EHF cân tại E.
c) Ta có: IG = IH (gt) => tam giác IGH cân tại I. Mà góc GIH=60o (gt). Do đó tam giác IGH đều.
Ta có: EG = EH (gt) => tam giác EGH cân tại E.
d) Tam giác MBC có: góc M + góc B+góc C=180o
Do đó: 71o + góc B = 38o = 180o =>Góc B = 180o – 71o -38o = 71o
Ta có: Góc B = góc M (=71o ) =>ΔCBM cân tại C
Bài 2: Cho hình 16, biết ED = EF; EI là tia phân giác của góc DEF.
Chứng minh rằng:
a) ΔEID = ΔEIF.
b) ΔDIFcân.
Giải:
a) Xét tam giác EID và EIF ta có:
+ ED = EF (gt)
+ Góc IED= Góc EIF (EI là tia phân giác của góc DEF)
+ EI là cạnh chung.
→ Do đó: ΔEID =ΔEIF(c.g.c)
b) ΔEID =ΔEIF (chứng minh câu a) => ID = IF. Do đó: tam giác DIF cân tại I.
Xem thêm Phiếu bài tập định lí Pitago
Bài viết khác cùng mục: